Lightlike hypersurfaces in spaces with concircular fields

نویسندگان

چکیده

Abstract Lightlike hypersurfaces in semi-Riemannian manifolds admitting concircular vector fields are investigated. We prove that such generally products of lightlike curves and warped product manifolds. In special cases, we show these totally geodesic or screen provided belong to their normal transversal bundles. A number examples furnished, where possible, illustrate the main concepts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lightlike hypersurfaces in indefinite S-manifolds

In a metric g.f.f -manifold we study lightlike hypersurfaces M tangent to the characteristic vector fields, and owing to the presence of the f -structure, we determine some decompositions of TM and of a chosen screen distribution obtaining two distributions invariant with respect to the structure. We discuss the existence of a g.f.f -structure on a lightlike hypersurface and, under suitable hyp...

متن کامل

Lightlike Real Hypersurfaces of Paraquaternionic Manifolds

The main purpose of this paper is to give fundamental properties of real lightlike hypersurfaces of paraquaternionic manifolds and to prove the non-existence of real lightlike hypersurfaces in paraquaternionic space form under some conditions. AMS MATHEMATICS SUBJECT CLASSIFICATION. Primary 53C15, Secondary 53C42, 53C50.

متن کامل

The curvatures of lightlike hypersurfaces of an indefinite Kenmotsu manifold

We study the forms of curvatures of lightlike hypersurfaces M of an indefinite Kenmotsu manifold M̄ subject to the conditions: (1) M is locally symmetric, i.e., the curvature tensor R of M be parallel on TM , or (2) M is a semi-symmetric manifold, i.e., R(X, Y )R = 0 on TM . M.S.C. 2010: 53C25, 53C40, 53C50.

متن کامل

Hypersurfaces in weighted projective spaces over finite fields with applications to coding theory

We consider the question of determining the maximum number of Fqrational points that can lie on a hypersurface of a given degree in a weighted projective space over the finite field Fq, or in other words, the maximum number of zeros that a weighted homogeneous polynomial of a given degree can have in the corresponding weighted projective space over Fq. In the case of classical projective spaces...

متن کامل

On Concircular and Torse-forming Vector Fields on Compact Manifolds

In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arabian Journal of Mathematics

سال: 2021

ISSN: ['2193-5343', '2193-5351']

DOI: https://doi.org/10.1007/s40065-021-00334-0